留学文书自荐书代写
留学硕士论文代写
SCI期刊ISTP期刊EI论文代写
留学申请推荐信个人陈述代写
留学研究计划书代写
留学论文作业代写修改
英语 English
日语 日本語
韩语한국의
法语 Français
德语 Deutsch
俄语 Pусский
西语 Español
意语 Italiano
·英语论文 ·日语论文
·韩语论文 ·德语论文
·法语论文 ·俄语论文

名称:智尚工作室
电话:0760-86388801
传真:0760-85885119
地址:广东中山市学院路1号
网址:www.zsfy.org
E-Mail:cjpdd@vip.163.com

商务QQ:875870576
微信二维码

业务联系
英语论文
Fault Detection Filter Design for Networked Multi-rate Systems with Fading Measurements and Randomly Occurring Faults
添加时间: 2019-8-10 11:41:47 来源: 作者: 点击数:647

SUBMITTED 1
Fault Detection Filter Design for Networked Multi-rate Systems with Fading Measurements and Randomly Occurring Faults
Yong Zhang, Zidong Wang, Lei Zou and Zhenxing Liu
Abstract
In this paper, the fault detection problem is investigated for a class of networked multi-rate systems (NMSs)
with network-induced fading channels and randomly occurring faults. The stochastic characteristics of the fading
measurements are governed by mutually independent random channel coeffificients over the known interval [0, 1].
By applying the lifting technique, the system model for the observer-based fault detection is established. With the
aid of the stochastic analysis approach, suffificient conditions are established under which the stochastic stability
of the error dynamics for the state estimation is guaranteed and the prescribed Hperformance constraint on
the error dynamics for the fault estimation is achieved. Based on the established conditions, the addressed fault
detection problem of NMSs is recast as a convex optimization one that can be solved via the semi-defifinite program
method, and the explicit expression of the desired fault detection fifilter is derived by means of the feasibility of
certain matrix inequalities. The main results are specialized to the networked single-rate systems that are a special
case of the NMSs. Finally, two simulation examples are utilized to illustrate the effectiveness of the proposed fault
detection method.
Index Terms
Networked multi-rate systems; Fading measurements; Randomly occurring faults; Fault detection.
I. INTRODUCTION
In networked control systems (NCSs) [1], [2], in addition to the well-studied communication delays
[3], [4], packet dropouts [5]–[8] and signal quantization [9]–[11], the channel fading phenomenon is often
unavoidable due mainly to the multi-path propagation, shadowing effects from obstacles, as well as the
path loss. Up to now, the stability and state estimation problems for the networked systems with fading
measurements have drawn some initial research attention [12]–[17]. On the other hand, most available
literature concerning NCSs has assumed the single-rate sampled-data setting for the underlying system.
However, in practice, especially for large-scale networked systems, the elements of the control system may
be structured distributively, that is, the sensors, actuators and controller are connected by communication
networks. For such kind of NCSs, faster A/D and D/A conversions would lead to better performance but
This work was supported in part by the National Natural Science Foundation of China under Grants 61104027, 61174107 and 61329301,
the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany.
Y. Zhang and Z. Liu are with the School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan
430081, China. (Email: zhangyong77@wust.edu.cn)
Z. Wang is with the Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom. He is
also with the Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia. (Email: Zidong.Wang@brunel.ac.uk)
L. Zou is with the Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150001, China.SUBMITTED 2
also mean higher implementation cost. Allowing different speeds for A/D and D/A conversions results in
satisfactory trade-offs between the performance and implementation cost. As such, the scheme of multi-rate
sampled-data (MSD) arise naturally and has become a research focus for many years, see [18]–[22].
In order to meet the ever-increasing demand for higher performance, higher safety, and reliability
standard, the fault detection problem has been an active research area for several decades [23], [24].
Recently, the fault detection (FD) problem of networked control systems [25]–[27], [29] has become a
rather hot topic. For example, to deal with the FD problem of nonlinear networked systems, the T-S fuzzy
model-based fault detection problem has been studied in [30] for NCSs with Markov delays. In [31], an
FD framework has been proposed for a class of nonlinear NCSs via a shared communication medium.
On the other hand, the FD problem of MSD systems has been investigated in [18]–[20]. To date, the FD
problem has not been adequately examined for networked multi-rate systems (NMSs), not to mention the
cases when fading measurements and randomly occurring faults are simultaneously presented.
In this paper, we aim to investigate the fault detection problem for a class of NMSs with fading
measurements and randomly occurring faults. Our main contributions can be highlighted as follows:
(1) the system model is comprehensive that covers networked multi-rate sampled-data dynamics, fading
measurements and randomly occurring faults, thereby better reflflecting the reality; (2) by using the lifting
technique, the FD problem for networked multi-rate sampled-data systems is investigated that caters for
fading measurements and randomly occurring faults; and (3) the suffificient conditions are establish to
quantify the relationships between the Hperformance, the fault occurrence probability as well as the
multiple of period h.
The rest of this paper is outlined as follows. In Section II, the multi-rate sampled-data system with
network-induced randomly occurring faults and measurements fading is introduced. Section III uses
lifting technique to establish the model for the multi-rate fault detection dynamics. In Section IV, by
employing the Lyapunov stability theory, some suffificient conditions are established in the form of matrix
inequalities, and then the fault detection gain is obtained by solving a convex optimization problem.
Two illustrative examples are given in Section V to demonstrate the effectiveness of the results obtained.
Finally, conclusions are drawn in Section VI.
Notation The notation used here is fairly standard except where otherwise stated. R n
and R n×m
denote,
respectively, the n-dimensional Euclidean space and the set of all n × m real matrices. l2[0, ) is the
space of square summable sequences. The notation X Y (respectively, X > Y ), where X and Y
are real symmetric matrices, means that X X Y is positive semi-defifinite (respectively, positive defifinite).
Prob{·} means the occurrence probability of the event “·” and E{·} stands for the expectation of the
stochastic variable ”·” with respect to the given probability measure Prob. 0 and I denote, respectively,
the zero matrix of compatible dimensions and the identity matrix of compatible dimensions. In symmetric
block matrices or complex matrix expressions, we utilize asterisk to represent a term that is induced
by symmetry, and diag{· · · } stands for a block-diagonal matrix. col{· · · } represents a column vector
composed of elements. k • k refers to the Euclidean norm for vectors. is the flfloor function which is
the largest integer not greater than . Matrices, if not explicitly specifified, are assumed to have compatible
dimensions.SUBMITTED 3
II. INTRODUCTION OF NETWORKED MULTI-RATE SYSTEMS
Consider the following class of discrete time systems with randomly occurring faults:
x(Tk+1) = Ax(Tk) + B1ω(Tk) + α(Tk)B2f(Tk) (1)
y(tk) = Cx(tk), k = 0, 1, 2, · · · (2)
where x(Tk) R nx
represents the state vector, y(tk) R ny
is the ideal measurement, ω(Tk) R nω
is the
disturbance input which belongs to 2[0, ), and f(Tk) R nf
is the fault signal to be detected. A, B1,
B2 and C are constant matrices with appropriate dimensions.
The sampling period of system (1) is denoted by h , Tk+1 Tk. For simplicity, it is assumed that
the measurement period is integer multiples of the system (2), i.e. tk+1 tk , bh, where b is a positive
integer. An illustration of the multi-rate sampled-data systems is shown in Fig. 1 where b = 3, Tk are the
updating instants for system states and tk are the updating instants for system measurements.
The stochastic variable α(Tk) is used to govern the random behaviour of the fault occurrence, which
is a Bernoulli distributed white-noise sequence taking values on 0 or 1 with the following probabilities:
Prob{α(Tk) = 1} = ¯α, Prob{α(Tk) = 0} = 1 α. ¯
In comparison with the wired NCSs, the wireless NCSs are susceptible to fading effect because of
multipath propagation or shadowing from obstacles affecting the wave propagation [12], [13]. In this
paper, the actually received measurement signal with probabilistic fading channels is described by
y¯(tk) =
X
(tk)
s=0
βs(tk)y(tk k sbh) (3)
where (tk) = min{ℓ,
tk
bh ⌋} with being a given positive scalar denoting the number of paths. y¯(tk) R ny
is the measurement output through fading channels. βs(tk) (s = 0, 1, ..., ℓ(tk)) are assumed to be mutually
independent channel coeffificients having probability density functions q(βs) on the interval [0, 1] with
known mathematical expectations β¯ s and variances β ˜¯2
s .
Remark 1: In a networked environment, the faults could occur in a random way due to a variety of
reasons such as limited bandwidth of the communication channels, random flfluctuation of the network load,
unreliability of the wireless links with large distances, as well as the fading measurement signals. The
network-induced fault can be modelled in (1) whose probability distribution information can be specifified
a prior through statistical tests. Note that both the time-delays and packet dropouts can be described by
this kind of fading model.
It can be seen that (1) evolves with a constant period h, while the fading measurement dynamics (3)
is generated with a slower period bh. Accordingly, (1) and (3) is essentially a multi-rate sampled-data
tk tk+1 tk+2
Tk Tk+1 Tk+2 Tk+3 Tk+6
Fig. 1. An illustration of the multi-rate sampled-data system with b=3.SUBMITTED 4
(MRSD) system model. Note that it is mathematically diffificult to handle the FD problem directly for such
kind of MRSD system. In the next section, we are going to convert the resulting MRSD system into a
single-rate system for technical convenience.
III. MODEL OF THE NETWORKED MULTI-RATE SYSTEMS
The following assumptions are needed in the derivation of the main results.
Assumption 1: The mutually independent channel coeffificients βs(tk) (s = 0, 1, · · · , ℓ) are independent
of the random variable α(Tk) governing the fault occurrence.
Assumption 2: In this paper, for the purpose of simplicity, for ri ≤ −1, we assume that x(i) = 0
and col{ω(i), f(i)} = 0. Without loss of generality, we also assume that + 1 b.
By applying the relation (1) recursively, one obtains a new system with time scale tk as follows:
x(tk+1) = A
b
x(tk) + A¯ 11ω¯(tk) + A¯ 12 ¯f(tk) +
X
bb1
i=0
α˜(tk + ih)A
bb1i
B2f(tk + ih) (4)
where
ω¯(tk) , col

ω(tk), ω(tk + h), · · · , ω(tk + (b 1)h)
,
¯f(tk) , col

f(tk), f(tk + h), · · · , f(tk + (b 1)h)
,
α˜(tk + ih) , α(tk + ih) α¯ (i = 0, 1, 2, · · · , b 1),
A¯ 11 , [A
bb1
B1 A
bb2
B1 · · · AB1 B1],
A¯ 12 , αA
bb1
B2 αA¯
bb2
B2 · · ·αAB ¯ 2 αB¯ 2].
Consider the following observer-based fault detection fifilter
(
xˆ(tk+1) = A
b
xˆ(tk) + L
y¯(tk) Cxˆ(tk)
 r(tk) = V
y¯(tk) Cxˆ(tk)

(5)
where xˆ(tk) R nxˆ
is the estimated state, r(tk) R nr
is the residual that is compatible with the fault
vector, and the L and V are the appropriately dimensioned fault detection fifilter gain matrices to be
designed. In our present work, it is intended to make the error between the residual signal r(tk) and the
fault signal f(tk) as small as possible in Hframework.
Letting e(tk) , x(tk) xˆ(tk), x¯(tk) , col

x(tk), x(tk k h), · · · , x(tk k (b 1)h)
and β˜ s(tk) ,
βs(tk) β¯ s, the error dynamics for the fault detection fifilter can be obtained from (4)-(5) and Assumption
2 as follows:

e(tk+1) =(A
b

LC)e(tk) + A¯ 11ω¯(tk) + A¯ 12 ¯f(tk) + LCx(tk)
X
s=0
β˜ s(tk)LCx(tk k sbh)
X
s=0
β¯ sLCx(tk k sbh)
+
X
bb1
i=0
α˜(tk + ih)A
bb1i
B2f(tk + ih)
r(tk) =V Ce(tk) V Cx(tk) +
X
s=0
β¯ sV Cx(tk k sbh)
+
X
s=0
β˜ s(tk)V Cx(tk k sbh)
(6)SUBMITTED 5
On the other hand, with similar procedure for obtaining (4), we have

x(tk+1 h) =A
bb1
x(tk) + A¯ 21ω¯(tk) + A¯ 22 ¯f(tk)
+
X
bb2
i=0
α˜(tk + ih)A
bb2i
B2f(tk + ih)
· · · · · ·
x(tk+1 (b 1)h) =Ax(tk) + A¯ b1ω¯(tk)
+ A¯ b2 ¯f(tk) + ˜α(tk)B2f(tk)
(7)
where
A¯ 21 , [A
bb2
B1 A
bb3
B1 · · · B1 0], · · · , A¯ (bb1)1 , [AB1 B1 · · · 0 0],
A¯ b1 , [B1 0 · · · 0 0], A¯ 22 , αA
bb2
B2 αA¯
bb3
B2 · · ·αB¯ 2 0], · · · ,
A¯ (bb1)2 , αAB2 αB¯ 2 · · · 0 0], A¯ b2 , αB2 0 · · · 0 0].
For convenience of later analysis, we denote
η(tk) , col

e(tk), x¯(tk), x¯(tk k bh), · · · , x¯(tk k ℓbh)
, re(tk) , r(tk) f(tk),
I , col
n
I, 0, · · · , 0
| {z }
(+1)b o
, A¯ , col

(1 β¯ 0)LC, A
b
, A
bb1
, · · · , A, 0, · · · , 0
| {z }
ℓb
,
B¯ 1 , col
n
A
bb1
B2, A
bb1
B2, A
bb2
B2, · · · , AB2, B2
| {z }
b
, 0, · · · , 0
| {z }
ℓb o
,
B¯ 2 , col
n
A
bb2
B2, A
bb2
B2, A
bb3
B2, · · · , B2, 0
| {z }
b
, 0, · · · , 0
| {z }
ℓb o
, · · · ,
B¯ b , col{B2, B2, 0, · · · , 0, 0
| {z }
b
, 0, · · · , 0
| {z }
ℓb
}.
Then, by using the lifting technique, the augmented system resulting from (4), (6) and (7) can be written
as

η(tk+1) =

A +
X
s=0
β˜ s(tk)A˜ s

η(tk) + B1ω¯(tk)
+

D +
X
bb1
i=0
α˜(tk + ih)D˜ i

¯f(tk)
re(tk) =

C +
X
s=0
β˜ s(tk)C˜ s

η(tk) + B2 ¯f(tk)
(8)
where
A , [(A
b
LC)I A¯ β¯ 1LCI − β¯ 2LCI · · · − β¯ LCI 0 · · · 0
| {z }
ℓb
],
A˜ s , [0 · · · 0
| {z }
s+1
LCI 0 · · · 0
| {z }
(+1)bbss1
],
B1 , col{A¯ 11, A¯ 11, A¯ 21, · · · , A¯ (bb1)1, A¯ b1, 0, · · · , 0
| {z }
ℓb
},SUBMITTED 6
D , col{A¯ 12, A¯ 12, A¯ 22, · · · , A¯ (bb1)2, A¯ b2, 0, · · · , 0
| {z }
ℓb
},
D˜ i , [0 · · · 0
| {z }
i
B¯ i+1 0 · · · 0
| {z }
bbii1
],
C , [V C C (1 β¯ 0)V C β¯ 1V C β¯ 2V C · · · β¯ V C 0 · · · 0
| {z }
ℓb
],
C˜ s , [0 · · · 0
| {z }
s+1
V C 0 · · · 0
| {z }
(+1)bbss1
], B2 , [
[
I 0 · · · 0
| {z }
bb1
],
(s = 0, 1, · · · , ℓ; i = 0, 1, · · · b 1).
Remark 2: By using the lifting technique, the model (8) for NMSs is obtained. Comparing with the fault
detection models of the MRSD system in [18]–[20], the model (8) exhibits two distinguished features: i)
both the fading measurements and randomly occurring faults are considered and therefore the model (8)
is quite comprehensive to better reflflect the networked environment; ii) the introduction of the stochastic
coeffificients in model (3) results in signifificant delays in the overall dynamics governed by (8). Note that
the communication delay issues have not been considered in [18]–[20].
Before proceeding further, we introduce the following defifinition.
Defifinition 1: The augmented system (8) is said to be exponentially mean-square stable if, with ω¯(tk) =
0 and ¯f(tk) = 0, there exist scalars δ > 0 and ̺ (0, 1) such that
E{kη(tk)k
2
} ≤ δ̺
tkE{kη(t0)k
2
}, η(t0) R (b+1)nx
The purpose of this paper is to design the observer-based fault detection fifilters such that the following
requirements are met simultaneously:
(a) the augmented system (8) is exponentially mean-square stable;
(b) under the zero-initial condition, the error re(tk) between the residual and the fault estimate satisfifies
X
k=0
E{kre(tk)k
2
} < γ
2
X
k=0
(kω¯(tk)k
2
+ k ¯f(tk)k
2
) (9)
for any nonzero ω¯(tk) or ¯f(tk), where scalar γ > 0 is a given disturbance attenuation level.
For the fault detection purpose, we adopt the threshold Jth and the residual evaluation function J(tk)
as follows:
J(tk) =
 X
tk
h=tk0
r
T
(h)r(h)

1
2
, Jth = sup ω¯(tk)2
¯f(tk)=0
E{J(tk)}
where tk0 denotes the initial evaluation time instant and tk k tk0 denotes the evaluation time steps.
The occurrence of faults can be detected by comparing J(tk) with Jth according to the following test
rule:
(
J(tk) Jth =alarm for fault
J(tk) < Jth =no fault
(10)
Remark 3: As is discussed in [23], depending on the type of the system under consideration, there
exist two residual evaluation strategies, i.e. the statistic testing and norm-based residual evaluation. For
the norm-based residual evaluation, the well-established robust control theory can be used to computeSUBMITTED 7
the threshold, therefore, it is widely adopted. On the other hand, from the engineering viewpoint, the
determination of a threshold is to fifind out the tolerant limit for disturbances and model uncertainties under
fault-free operation conditions. There are some factors such as the dynamics of the residual generator as
well as the bounds of the unknown inputs and model uncertainties, they all signifificantly inflfluence this
procedure. As a result, false alarm and missed detection are two common phenomenon in fault diagnosis.
IV. MAIN RESULTS
In this section, by resorting to the stochastic analysis techniques, we shall provide the Hperformance
analysis result for the augmented system (8) and then proceed with the subsequent fault detection fifilter
design stage.
Theorem 1: Let the disturbance attenuation level γ > 0 and the fault detection fifilter parameters L
and V be given. The augmented system (8) is exponentially mean-square stable while achieving the H
performance constraint (9) if there exists matrix P such that the following matrix inequality holds:
Φˆ ,

Φ¯ 11 Φ¯ 12 Φ¯ 13
∗ −I 0
∗ ∗ −I 
< 0 (11)
where
Φ¯ 11 ,

ÿ
A
T
PB1 A
T
PD + C
T
B2
∗ B
T
1 PB1 γ
2
I B
T
1 PD
∗ ∗ Φ33 
,
ü
,
X
s=0
β ˜¯2
sA˜T
s PA˜ s + A
T
PA − P, Φ¯ 12 , col

C
T
, 0, 0
,
Φ¯ 13 , col

C ˆ˜T
, 0, 0
, C ˆ˜T , [β ˜¯ 0C˜T
0 β ˜¯ 1C˜T
1 · · · β ˜¯ C˜T
],
Φ33 ,
X
bb1
i=0
αˇ
2
D˜T
i PD˜ i + D
T
PD + B
T
2 B2 γ
2
I.
Proof: Choose the following Lyapunov function:
V (η(tk)) = η
T
(tk)P η(tk) (12)
By calculating the difference of V (η(tk)) along the trajectory of the augmented system (8) with ω¯(tk) =
0 and ¯f(tk) = 0, and taking the mathematical expectation, one has
E(∆V (η(tk))) = E{η
T
(tk+1)P η(tk+1) η
T
(tk)P η(tk)}
= E{η
T
(tk)((A +
X
s=0
β˜ s(tk)A˜ s)
T
P(A +
X
s=0
β˜ s(tk)A˜ s) P)η(tk)}
= η
T
(tk)

A
T
PA − P +
X
s=0
β˜2
sA˜T
s PA˜ s

η(tk)
= η
T
(tkη(tk) (13)
It follows from (11) that t < 0 and, subsequently,
E V (η(tk))

≤ −λmin(
(
Γ)kη(tk)k
2SUBMITTED 8
By following the similar analysis in [5], the augmented system (8) is exponentially mean-square stable.
Finally, let us consider the Hperformance of the overall estimation dynamics. For this purpose, we
introduce the following index:
Jn , E
nX
n
k=0
kre(tk)k
2
·
X
n
k=0
γ
2
(kω¯(tk)k
2
+ k ¯f(tk)k
2
)
o
(14)
Under the zero-initial condition, it follows from (14) that
Jn ,E
nX
n
k=0
kre(tk)k
2
·
X
n
k=0
γ
2
(kω¯(tk)k
2
+ k ¯f(tk)k
2
)
o
X
n
k=0
E
n
kre(tk)k
2
γ
2
(kω¯(tk)k
2
+ k ¯f(tk)k
2
) + ∆V (η(tk))
o
E{V (η(tn+1)}
X
n
k=0
E
n
kre(tk)k
2
γ
2
(kω¯(tk)k
2
+ k ¯f(tk)k
2
) + ∆V (η(tk))
o =
X
n
k=0
n
η
T
(tk)[
X
s=0
β ˜¯2
sA˜T
s PA˜ s + A
T
PA +
X
s=0
β ˜¯2
sC˜T
s C˜ s
+ C
T
C − P]η(tk) + 2η
T
(tk)[A
T
PD + C
T
B2] ¯f(tk)
+ 2η
T
(tk)A
T
PB1ω¯(tk) + 2¯ω
T
(tk)B
T
1 PD ¯f(tk)
+ ¯f
T
(tk)[
X
bb1
i=0
αˇ
2
D˜T
i PD˜ i + D
T
PD + B
T
2 B2 γ
2
I] ¯f(tk)
+ ¯ω
T
(tk)[B
T
1 PB1 γ
2
Iω(tk)
o =
X
n
k=0
n
ϑ
T
(tkϑ(tk)
o =
X
n
k=0
n
ϑ
T
(tk)(Φ¯ 11 + Φ) ˜ ϑ(tk)
o
(15)
where
ϑ(tk) , col{η(tk), ω¯(tk), ¯f(tk)}, E{α˜
2
(tk + ih)} = (
p
α¯(1 α¯))
2 , αˇ
2
,
Φ , Φ¯ 11 + Φ˜, Φ˜ , diag{
X
s=0
β ˜¯2
sC˜T
s C˜ s + C
T
C, 0, 0} = Φ¯ 12Φ¯ T
12 + Φ¯ 13Φ¯ T
13.
By using the Schur Complement Lemma to (11), we have
Φ =ˆ Φ¯ 11 + Φ¯ 12Φ¯ T
12 + Φ¯ 13Φ¯ T
13 < 0 <, SPAN style="FONT-FAMILY: Times-Roman; COLOR: rgb(0,0,255); FONT-SIZE: 11.955pt; mso-spacerun: 'yes'">(16)
that is Φ¯ 11 + Φ˜ < 0, therefore, we obtain the following relation from (15)
E
V (η(tk))

+ E
»
kre(tk)k
2

γ
2
R
kω¯(tk)k
2
+ k ¯f(tk)k
2

< 0 (17)
for all nonzero ω¯(tk) and ¯f(tk). Considering zero initial condition, the inequality (17) implies that
X
n
k=0
E{kre(tk)k
2
} < γ
2
X
n
k=0
(kω¯(tk)k
2
+ k ¯f(tk)k
2
)SUBMITTED 9
Letting n → ∞, it follows from the aforementioned inequality that
X
k=0
E{kre(tk)k
2
} < γ
2
X
k=0
(kω¯(tk)k
2
+ k ¯f(tk)k
2
)
which is (9). The proof is now complete.
Having established the analysis results, we are now ready to deal with the fifilter design problem. In the
following theorem, a suffificient condition is provided for the existence of the desired Hmulti-rate fault
detection fifilter. For technical convenience, we denote
A¯T
10 , col
n
}
β¯ 1C
T
L¯T
,
;
β¯ 2C
T
L¯T
, · · · ,
;
β¯ C
T
L¯T
o
,
A¯T
1 , col
n
(A
b
)
T
P1 C
T
L¯T
,(1 β¯ 0)C
T
L¯T
, A¯T
10, 0, · · · , 0
| {z }
ℓb o
,
A¯T
i , col
n
(A
b+2i
)
T
Pi , 0, · · · , 0
| {z }
(+1)b o
, Aˆ¯T ,
h
A¯T
1 A¯T
2 · · ·A¯T
b+1 0 · · · 0
| {z }
ℓb
i
,
X
T
j , col
n
0, · · · , 0
| {z }
j+1
,
;
C
T
L¯T
, 0, · · · , 0
| {z }
bb1j o
, A ¯˜T
j ,
h
X
T
j 0 · · · 0
| {z }
b
i
,
Pˆ , diag{P1, P2, · · · , P(+1)b+1}, A ˆ˜T ,
h
β ˜¯ 0A ¯˜T
0 β ˜¯ 1A ¯˜T
1 · · · β ˜¯ A ¯˜T
i
,
D ˆ˜T ,
h
αˇD˜T
0 Pˆ αˇD˜T
1 Pˆ · · ·αˇD˜T
bb1Pˆ
i
, C ˆ˜T , [β ˜¯ 0C˜T
0 β ˜¯ 1C˜T
1 · · · β ˜¯ C˜T
],
(i = 2, 3, · · · , b + 1; j = 0, 1, 2, · · · , ℓ).
Theorem 2: For the given disturbance attenuation level γ > 0, the augmented system (8) is exponentially
mean-square stable while achieving the performance constraint (9) for any nonzero ω¯(tk) and ¯f(tk) if
there exist matrices L¯, V¯ and Pi > 0 (i = 1, 2, · · · ,(+ 1)b + 1) such that the following linear matrix
inequality (LMI) holds:
Ξ¯ ,

Ξ¯ 11 Ξ12 Ξ¯ 13
Ξ22 0
∗ ∗ Ξ¯ 33 
< 0 (18)
where
Ξ¯ 11 , diag
n
ÿ
P , ˆ γ
2
I,
;
γ
2
I
o
, Ξ12 ,

C ˆ˜T
C
T
0 0
0 B
T
2 
,
Ξ¯ 13 ,

A ˆ˜T
0 Aˆ¯T
0 0 B
T
1 Pˆ
0 D ˆ˜T
D
T
Pˆ 
, Ξ22 , diag{−I, · · · ,
;
I},
Ξ¯ 33 , diag{−P , ˆ · · · ,
;
Pˆ},
and other corresponding matrices are defifined in Theorem 1. Furthermore, if the inequality (18) is feasible,
the desired fault detection fifilter gain can be determined by
L = P
v
1
1 L, V ¯ = V . ¯ (19)SUBMITTED 10
Proof: By using the Schur Complement Lemma, (11) is equivalent to the following inequality:
Ξ = 
Ξ11 Ξ12 Ξ13
Ξ22 0
∗ ∗ Ξ33 
< 0 (20)
where
Ξ11 , diag{−P,
;
γ
2
I,
;
γ
2
I}, Ξ13 ,

A ˇ˜T
0 A
T
P
0 0 B
T
1 P
0 D ˇ˜T
D
T
P 
,
Ξ33 , diag{−P, · · · ,
;
P
| {z }
b++2
}, A ˇ˜T ,
h
β ˜¯ 0A˜T
0 P β ˜¯ 1A˜T
1 P · · · β ˜¯ A˜T
P
i
,
D ˇ˜T ,
h
αˇD˜T
0 P αˇD˜T
1 P · · · αˇD˜T
bb1P
i
.
In order to utilize the Matlab LMI Toolbox to design the fault detection fifilter effectively, we assume
P as Pˆ = diag{P1, P2, · · · , P(+1)b+1}, let L¯ = P1L and V¯ = V , then (18) can be obtained and the fault
detection fifilter can be expressed as (19). The proof of this theorem is now complete.
To sum up, the FD problem of networked multi-rate systems can be solved by the following steps:
1) Design the fault detection fifilter by using Theorem 2.
2) Employ the designed fault detection fifilters in 1) to produce the residual evaluation function J(tk)
and appropriate threshold Jth.
3) Compare the residual evaluation function J
½
tk

with the threshold Jth to determine whether there
is a fault by using the test rule (10).
4) Determine the fault occurrence time according to Jth < J tk

for the fifirst time.
As the special case of NMSs, we now deal with the fault detection fifilter design problem of networked
single-rate systems (NSSs) with network-induced fading measurements and randomly occurring faults.
With lifting technique, for system (1)-(3) with b = 1, choosing observer-based fault detection fifilter as
residual generator (5), and letting
ω¯(Tk) , col
n
ω(Tk), ω(Tk k h), · · · , ω(Tk k ℓh)
o
,
¯f(Tk) , col
n
f(Tk), f(Tk k h), · · · , f(Tk k ℓh)
o
,
e¯(Tk) , col
n
e(Tk), x(Tk), x(Tk k h), · · · , x(Tk k ℓh)
o
,
e(Tk) , x(Tk) xˆ(Tk), J , col
n
I, 0, · · · , 0
| {z }
+1 o
,
Ai , col
n
(1 β¯ ii2)LC, 0, · · · , 0
| {z }
ii2
, A, 0, · · · , 0
| {z }
`ii2 o
,
A1 , col
n
A A LC, 0, · · · , 0
| {z }
+1 o
, J1 , col
n
I, I, 0, · · · , 0
| {z }
`1 o
,
Jj , col
n
0, · · · , 0
| {z }
j
, I, 0, · · · , 0
| {z }
+1j o
,(i = 2, 3, · · · , ℓ + 2; j = 2, 3, · · · , ℓ + 1),SUBMITTED 11
we have the following augmented system:

e¯(Tk+1) =

A +
X
s=0
β˜ s(Tk)A˜ s

e¯(Tk) + B1ω¯(Tk)
+

D +
X
i=0
α˜(Tk k ih)D˜ i

¯f(Tk)
re(Tk) =

C +
X
s=0
β˜ s(Tk)C˜ s

e¯(Tk) + B2 ¯f(Tk)
(21)
where
A ,
h
A1 A2 · · · A+2
i
, A˜ s ,
h
0 · · · 0
| {z }
s+1
LCJ 0 · · · 0
| {z }
`s
i
,
B1 ,
h
J1B1 J2B1 · · · J+1B1
i
, D ,
h
α¯J1B2 α¯J2B2 · · · α¯J+1B2
i
,
D˜ i ,
h
0 · · · 0
| {z }
i
Ji+1B2 0 · · · 0
| {z }
`i
i
, C˜ s ,
h
0 · · · 0
| {z }
s+1
V C 0 · · · 0
| {z }
`s
i
,
C ,
h
V C C (1 β¯ 0)V C
β¯ 1V C · · · β¯ V C
i
,
B2 , col
n
¢
I, 0, · · · , 0
| {z }
o
, (s, i = 0, 1, · · · , ℓ).
Based on the augmented system (21), by following similar main line of obtaining Theorems 1-2, the
fault detection fifilter of NNSs can be designed by the following Corollary. To facilitate the presentation
of Corollary 1, we denote
Yi , col
n
0, · · · , 0
| {z }
i+1
,
;
C
T
L~ T
, 0, · · · , 0
| {z }
`i o
, Zi ,
h
Yi 0 · · · 0
i
,
A¯ 1 , col
n
A
T
Q1 C
T
L~ T
,(1 β¯ 0)C
T
L~ T
,
β¯ 1C
T
L~ T
, · · · ,
;
β¯ C
T
L~ T
o
,
A¯ j , col
n
0, · · · , 0
| {z }
jj1
, A
T
Q2, 0, · · · , 0
| {z }
+2j o
, Aˆ¯,
h
A¯ 1 A¯ 2 · · · A¯ +2
i
,
A ˆ˜ ,
h
β ˜¯ 0Z0 β ˜¯ 1Z1 · · · β ˜¯ Z
i
, Qˆ , diag
n
Q1, Q2, · · · , Q+2
o
,
D ˆ˜ ,
h
αˇD˜T
0 Qˆ αˇD˜T
1 Qˆ · · · αˇD˜T
Qˆ
i
, C ˆ˜ ,
h
β ˜¯ 0C˜T
0 β ˜¯ 1C˜T
1 · · · β ˜¯ C˜T
i
,
(i = 0, 1, · · · , ℓ; j = 2, 3, · · · , ℓ + 2).
Corollary 1: For the given disturbance attenuation level γ > 0, the augmented system (21) is expo
nentially mean-square stable while achieving the performance constraint (9) for any nonzero ω¯(Tk) and
¯f(Tk) if there exist matrices L~ , V~ and Qi > 0 (i = 1, 2, · · · , ℓ + 2) such that the following LMI holds:
Ψ = 
Ψ11 Ψ12 Ψ13
Ψ22 0
∗ ∗ Ψ33 
< 0 (22)SUBMITTED 12
where
Ψ11 = diag
n
Q, ˆ γ
2
I,
;
γ
2
I
o
, Ψ12 = 
C T C ˆ˜
BT
2 0
0 0 
, Ψ13 = 
A ˆ˜ 0 A ˆ¯
0 0 DT
Qˆ
0 D B ˆ˜ T
1 Qˆ 
,
Ψ22 = diag

I, · · · ,
;
I
, Ψ33 = diag

ç
Q, ˆ · · · ,
;
Qˆ
.
Furthermore, if the aforementioned inequality is feasible, the desired fault detection fifilters can be
determined by
L = Q
¼
1
1 L, V ~ = V . ~ (23)
Remark 4: In this paper, we fifirst establish a comprehensive model that covers multi-rate sampled-data
dynamics, network-induced fading measurements and randomly occurring faults, thereby better reflflecting
the reality of NCSs. In this case, suffificient conditions are given in Theorem 1-2 which make sure that the
augmented system (8) is exponentially mean-square stable and Hcriterion in (9) is satisfified. Note that,
at this stage, the designed fault detection fifilter which shows the combined effects of fading parameters,
fault occurrence probability as well as multi-rate multiple. Next, as the special case of networked multirate
systems, i.e. b = 1, the general networked single-rate systems with fading measurements and randomly
occurring faults is taken into account, and corresponding fault detection fifilter is also designed in Corollary
1.
V. TWO ILLUSTRATIVE EXAMPLES
In this section, two numerical examples are presented to demonstrate the effectiveness of the proposed
fault detection fifilter design scheme with fading measurements and randomly occurring faults for NMSs
and NSSs, respectively.
Example 1 In this numerical example, for MSSs, the system parameters of (1) and (2) are chosen as
follows:
A =
"
0.8 h
0 0.6 #
, B1 =
"
h
2
2
h #
, B2 =
"
3h
2
0.6 #
, C =
h
0 0.3
i
.
Here, the sampling period h of system (1) is 0.5s, the measurement updating period is 1.5s (i.e. b = 3),
the number of paths is = 1, the probability of the randomly occurring faults is α¯ = 0.6, and the
probability density functions of channel coeffificients are

q(β0) = 0.0005(e
9.89β0
ü 1), 0 β0 1;
q(β1) =
(
10β1,
<
2.50(β1 1),
0 β1 0.20;
0.20 < β1 1;
(24)
The mathematical expectations β¯ s can be calculated as 0.8991 and 0.4000, and the variances β ˜¯2
s (s = 0, 1)
are 0.0133 and 0.0467, respectively. By using the MATLAB LMI toolbox, for the augmented system (8),
we obtain the minimum disturbance attenuation level as γ= 1.0094. The sub-optimal FD fifilter can then
be obtained as following:
L =
"
2.1427
-
1.0263#
; V =
=
0.0389.SUBMITTED 13
0 10 20 30 40 50 60 70 80 90 100
−0.12
−0.1
−0.08
−0.06
−0.04
−0.02
0
0.02
Time steps tk
R
e
s
id
u
a
l e
s
t
im
a
t
io
n
r
e
(
t
k
)
Fig. 2. Residual signal r(tk) for NMSs.
0 10 20 30 40 50 60 70 80 90 100
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Time steps tk
R
e
s
id
u
a
l e
v
a
lu
a
t
io
n
f
u
n
c
t
io
n
J
(
t
k
)
J(tk )
J th
Fig. 3. Evolution of residual evaluation function J(tk) for NMSs.
Letting the initial state of (1) be x(T0) = col{0.1,
;
0.1} and its estimation be xˆ(t0) = col{0.1, 0}. To
further illustrate the effectiveness of the designed fault detection fifilter, for tk = 0, 1, 2, · · · , 100, let the
fault signal and the disturbance input be given as
f(tk) =
(
0.1, 30 tk 50
0, else
, ω(tk) = e
E
0.01tk
sin(2tk).
The residual response r(tk) and evolution of residual evaluation function J(tk) =
nP
tk
h=tk0 r
T
(h)r(h)
o
1
2
for NMSs are shown in Figs. 2-3, respectively. After 200 runs of the simulations, we get an average value
of Jth = 0.0369. From Fig. 3, it can be shown that 0.0275 = J(29) < Jth < J(30) = 0.1090, which
means that the fault can be detected as soon as its occurrence.
We now examine the relationship between the disturbance attenuation level γ and the fault occurrence
probability α¯ as well as the multiple b of the sampling period h. It can be observed from Table I that theSUBMITTED 14
disturbance attenuation performance deteriorates with increased α¯ and b, which is in agreement with the
engineering practice.
TABLE I
THE PERMITTED MINIMUM γ.
α¯ = 0.2 ¯α = 0.4 ¯α = 0.7 ¯α = 0.9
b = 2 1.0008 1.0022 1.0035 1.0047
b = 3 1.0021 1.0057 1.0115 1.0145
b = 4 1.0109 1.0131 1.0145 1.0197
Example 2 As the special case of NMSs, in this example, an internet-based three-tank system is
introduced to illustrate the effectiveness of our proposed NSSs. With the variables defifined in [32], the
system model (1) and (2) with following parameters are adopted:
A = 
0.9974 0 0.0026
0 0.9951 0.0024
0.0026 0.0024 0.9950 
, B1 = 
16.2190 0
0 16.2007
0.0212 0.0193 
, B2 = 
0.0212
0.0193
16.1997 
, C =
"
1 0 0
0 1 0 #
.
where x(Tk) R
3
is the system state representing the liquid levels of the three tanks; similar to [32],
ω(Tk) R
2
is the disturbance used to model the unknown disturbance and input, f(Tk) R is the
fault signal reflflecting the leakages in tank 3, y(Tk) R
2
is the measurement output describing the height
measurements of tank 1 and tank 2. Here, we mainly investigate the internet-based fault detection problem,
the measurement signal will obtain through remote network, thus, due to the multi-path transmission and
shadowing problem, network-induced channel fading and randomly occurring fault usually take place,
then the actual received measurement signal through network is y¯(Tk) R
2
, which satisfifies (3).
Our aim here is to detect the faults by using the established mathematic model of the system (1) as
well as the measurement signals (2) through network in the presence of a leakage in tank 3. In order to
discuss simply the fault detection problem with fading measurement, we choose the fading parameters as
(24). Choosing the faults occurrence probability as α¯ = 0.6, similar to Example 1, by using Corollary 1,
the sub-optimal fault detection fifilter and the minimum Hattenuation level can be obtained as follows:
L = 
ª
0.0042 0.0100
ª
0.0030 0.0069
ª
0.0095 0.0212 
, V = 10
85
×
h
0.1185
5
0.2856
i
, γ= 1.0023.
The initial value of (21) is chosen as e¯(T0) = col{0.1,
;
0.1, 0, 0.2, 0,
;
0.6, 0, 0.3, 0}, for Tk =
0, 1, 2, · · · , 100, the fault signal and exogenous disturbance input signal are set as
f(Tk) =
(
0.5, 30 Tk 50
0, else
, ω(Tk) =
"
e
Æ
0.02Tk
sin(0.2Tk)
e
ö
0.01Tk
cos(0.1Tk) #
.
The residual response r(Tk) and evolution of residual evaluation function J(Tk) =
nP
Tk
h=T0 r
T
(h)r(h)
o
1
2
for NSSs are shown in Figs. 4-5, respectively. After 200 runs of the simulations, we get an average value
of Jth = 1.4582 × 10
84
. From Fig. 5, it can be shown that 1.3526 × 10
ü4
= J(41) < Jth < J(42) =
1.6304 × 10
84
, which means that the fault can be detected within 11 time steps after the fault occurred
at Tk = 30.SUBMITTED 15
0 10 20 30 40 50 60 70 80 90 100
−6
−4
−2
0
2
4
6
8
10
x 10
−5
Time steps Tk
R
e
s
id
u
a
l e
s
t
im
a
t
io
n
r
e
(
t
k
)
Fig. 4. Residual signal r(Tk) for NSSs.
0 10 20 30 40 50 60 70 80 90 100
0
1
2
x 10
−4
Time steps Tk
R
e
s
id
u
a
l e
v
a
lu
a
t
io
n
f
u
n
c
t
io
n
J
(T
k
)
J(Tk )
J th
Fig. 5. Evolution of residual evaluation function J(Tk) for NSSs.
VI. CONCLUSION
In this paper, we have dealt with the fault detection problem for networked multi-rate systems with
randomly occurring faults and fading measurements. Different from the existing results of fault detection
for multi-rate sampled-data system, the delayed networked multi-rate systems is considered. By choosing
linear matrix inequality technique and convex optimization tool so that we can use Matlab LMI Toolbox
to design the fault detection fifilter effectively. Furthermore, as the special of NMSs, we also supply the
result of fault detection for NSSs with randomly occurring faults and fading measurements. Two examples
have been used to highlight the effectiveness of the proposed fault detection technology in this paper. It
would be interesting to deal with the following future research topics [33]–[39]: 1) investigation on theSUBMITTED 16
impact from quantization strategies and event-triggered communication mechanism; and 2) extension of
the techniques developed in this paper to more general time-varying and nonlinear systems.
REFERENCES
[1] M. Basin, S. Elvira-Ceja and E. Sanchez. Mean-square Hfifiltering for stochastic systems: application to a 2DOF helicopter. Signal
Processing, vol. 92, no. 3, pp. 801–806, 2012.
[2] R. Caballero-guila, A. Hermoso-Carazo and J. Linares-P´erez. Optimal state estimation for networked systems with random parameter
matrices, correlated noises and delayed measurements. International Journal of General Systems vol. 44, no. 2, pp. 142–154, 2015.
[3] H. Gao, T. Chen and J. Lam, A new delay system approach to network-based control, Automatica, Vol. 44, No. 1, pp. 39–52, 2008.
[4] Z. Du, D. Yue and S. Hu, Hstabilization for singular networked cascade control systems with state delay and disturbance, IEEE
Transactions on Industrial Informatics, Vol. 10, No. 2, pp. 882–894, 2014.
[5] Z. Wang, F. Yang, D.W.C. Ho and X. Liu, Robust Hcontrol for networked systems with random packet losses, IEEE Transactions
on Systems, Man, and Cybernetics - Part B, Vol. 37, No. 4, pp. 916–924, 2007.
[6] J. Xiong and J. Lam, Stabilization of linear systems over networks with bounded packet loss, Automatica, Vol. 43, No. 1, pp. 80–87,
2007.
[7] J. Hu, J. Liang, D. Chen, D. Ji and J. Du, A recursive approach to non-fragile fifiltering for networked systems with stochastic uncertainties
and incomplete measurements, The Journal of The Franklin Institute, Vol. 352, No. 5, pp. 1946–1962, 2015.
[8] G. Wei, S. Liu, Y. Song and Y. Liu, Probability-guaranteed set-membership fifiltering for systems with incomplete measurements,
Automatica, Vol. 60, pp. 12–16, 2015.
[9] E. Tian, D. Yue and X. Zhao, Quantised control design for networked control systems, IET Control Theory and Applications, Vol. 1,
No. 6, pp. 1693–1699, 2007.
[10] Y. Zou, J. Lam, Y. Niu and D. Li, Constrained predictive control synthesis for quantized systems with Markovian data loss, Automatica,
Vol. 55, pp. 217–225, 2015.
[11] H. Dong, Z. Wang, S. X. Ding and H. Gao, Finite-horizon reliable control with randomly occurring uncertainties and nonlinearities
subject to output quantization, Automatica, Vol. 52, pp. 355-362, 2015.
[12] N. Elia, Remote stabilization over fading channels, Systems and Control Letters, No. 3, pp. 237–249, 2005.
[13] A.S. Leong, S. Dey, G. Nair and P. Sharma, Power allocation for outage minimization in state estimation over fading channels, IEEE
Transactions on Signal Processing, Vol. 59, No. 7, pp. 3382–3397, 2011.
[14] N. Xiao, L. Xie and L. Qiu, Feedback stabilization of discrete-time networked systems over fading channels, IEEE Transactions on
Automatic Control, Vol. 57, No. 9, pp. 2176–2189, 2012.
[15] D. Ding, Z. Wang, B. Shen and H. Dong, Hstate estimation with fading measurements, randomly varying nonlinearities and
probabilistic distributed delays, International Journal of Robust and Nonlinear Control, Vol. 25, No. 13, pp. 2180-2195, 2015.
[16] S. Zhang, Z. Wang, D. Ding, H. Dong, F. E. Alsaadi and T. Hayat, Non-fragile Hfuzzy fifiltering with randomly occurring gain
variations and channel fadings, IEEE Transactions on Fuzzy Systems, in press, DOI: 10.1109/TFUZZ.2015.2446509.
[17] H. Dong, Z. Wang, S. X. Ding and H. Gao, Event-based Hfifilter design for a class of nonlinear time-varying systems with fading
channels and multiplicative noises, IEEE Transactions on Signal Processing, Vol. 63, No. 13, pp. 3387-3395, 2015.
[18] M. Fadali, Observer-based robust fault detection of multi-rate linear system using a lift reformulation, Computers and Electrical
Engineering, Vol. 29, No. 1, pp. 235–243, 2003.
[19] I. Izadi, Q. Zhao and T. Chen, An optimal scheme for fast rate fault detection based on multi-rate sampled data, Journal of Process
Control, Vol. 15, No. 3, pp. 307–319, 2005.
[20] M. Zhong, H. Ye, S.X. Ding and G. Wang, Observer-based fast rate fault detection for a class of multi-rate sampled-data systems,
IEEE Transactions on Automatic Control, Vol. 52, No. 3, pp. 520–525, 2007.
[21] Y. Liang, T. Chen and Q. Pan, Multi-rate stochastic Hfifiltering for networked multi-sensor fusion, Automatica, Vol. 46, No. 2,
pp. 437–444, 2010.
[22] W.-A. Zhang, G. Feng and L. Yu, Multi-rate distributed fusion estimation for sensor networks with packet losses, Automatica, Vol. 48,
No. 9, pp. 2016–2028, 2012.
[23] J. Gertler, Fault Detection and Diagnosis in Engineering Systems, Dekker, New York,1998.
[24] S. Ding, Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, Tools, Berlin, Germany: Springer-Verlag, 2008.
[25] H. Fang, H. Ye and M. Zhong, Fault diagnosis of networked control systems, Annual Reviews in Control, Vol. 31, No. 1, pp. 55–68,
2007.
[26] Y. Long and G.-H. Yang, Fault detection for a class of networked control systems with fifinite-frequency servo inputs and random packet
dropouts, IET Control Theory and Applications, Vol. 6, No. 15, pp. 2397–2408, 2012.
[27] J. Feng, S. Wang and Q. Zhao, Closed-loop design of fault detection for networked non-linear systems with mixed delays and packet
losses, IET Control Theory and Applications, Vol. 7, No. 6, pp. 858–868, 2013.SUBMITTED 17
[28] H. Dong, Z. Wang, S. X. Ding and H. Gao, Finite-horizon estimation of randomly occurring faults for a class of nonlinear time-varying
systems, Automatica, Vol. 50, No. 12, pp. 3182-3189, 2014.
[29] Y. Zhang, Z. Liu, H. Fang and H. Chen, Hfault detection for nonlinear networked systems with multiple channels data transmission
pattern, Information Sciences, Vol. 221, No. 1, pp. 534–543, 2013.
[30] Y. Zheng, H. Fang and H. Wang, Takagi-sugeno fuzzy-model-based fault detection for networked control systems with Markov delays,
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 36, No. 4, pp. 924–929, 2006.
[31] Z. Mao, B. Jiang and P. Shi, Protocol and fault detection design for nonlinear networked control systems, IEEE Transactions on Circuits
and Systems–II: Express Briefs, Vol. 56, No. 3, pp. 255–259, 2009.
[32] X. He, Z. Wang, Y. Ji and D.H. Zhou, Robust fault detection for networked systems with distributed sensors, IEEE Transactions on
Aerospace and Electronic Systems, Vol. 47, No. 1, pp. 166–177, 2011.
[33] X. Wang, E. E. Yaz and J. Long, Robust and resilient state-dependent control of continuous-time nonlinear systems with general
performance criteria, Systems Science and Control Engineering: An Open Access Journal, Vol. 2, No. 1, pp.34-40, 2014.
[34] D. Ding, Z. Wang, B. Shen and H. Dong, Envelope-constrained Hfifiltering with fading measurements and randomly occurring
nonlinearities: the fifinite horizon case, Automatica, Vol. 55, pp. 37-45, 2015.
[35] M. Chen, W. Chen and Q. Wu, Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance
observer, Science China: Information Sciences, Vol. 57, No. 1, pp. 1-13, 2014.
[36] L. Sheng, W. Zhang and M. Gao, Relationship between Nash equilibrium strategies and H/H2 control of stochastic Markov jump
systems with multiplicative noise, IEEE Transactions on Automatic Control, Vol. 59, No. 9, pp. 2592-2597, 2014.
[37] M. Lefebvre and F. Zitouni, Analytical solutions to LQG homing problems in one dimention, Systems Science and Control Engineering:
An Open Access Journal, Vol. 2, No. 1, pp. 41-47, 2014.
[38] X. Lan, Y. Wang and L. Liu, Dynamic decoupling tracking control for the polytopic LPV model of hypersonic vehicle, Science China:
Information Sciences, Vol. 58, No. 9, pp. 1-14, 2015.
[39] D. Ding, Z. Wang, J. Lam and B. Shen, Finite-Horizon Hcontrol for discrete time-varying systems with randomly occurring
nonlinearities and fading measurements, IEEE Transactions on Automatic Control, in press, DOI:10.1109/TAC.2014.2380671.
 

关于我们  |  诚聘英才  |  联系我们  |  友情链接
版权所有:@ 智尚代写联盟 电话:0760-86388801 客服QQ:875870576
地址: 广东中山市学院路1号 皖ICP备12010335号-7
  • 論文作成開始報告書
  • 西语作业代写PLANIFICACI&
  • 西班牙语作业代写PLANIFICAC
  • 高等教育科学研究项目立项指南
  • Reason for applica
  • 日语学位论文开题报告代写
  • 翻译硕士(英语笔译及英语口译)学位论
  • 中国现当代文学翻译的现状与问题
  • 文学翻译新观念
  • 找人代写硕士论文,要求写手至少硕士学
  • 重复提取促进长期记忆保持和意义学习的
  • 艺术院校内容依托英语教学的实证研究
  • 基于概念场的认知框架中的概念隐喻分析
  • 多元回归统计建模在语料库语言学中近义
  • paper6工作室专注留学生论文代写
  • 德语医学论文标题汉译的编辑加工
  • 高职韩语专业毕业论文的问题分析
  • develop communicat
  • VICTORIA UNIVERSIT
  • 日本地址电话
  • 英语动词现在时与将来时呼应的认知解读
  • 核心素养与英语课堂教学
  • 新国标下商务英语精读内容与语言融合型
  • 语言生态学视阈下美国语言教育政策研究
  • 应用技术型民族院校的大学英语教学改革
  • 圣诞节西班牙语
  • 基于区域经济发展的分类递进式大学英语
  • MOOC对高校专业课教学的效能研究
  • 西班牙语论文代写
  • 实习报告写作要求规范细则
  • 茶本体的开发,实现和评估
  • Anaylse des Leben
  • um Material,was ge
  • TEXTOS WEB ACOCEX
  • praktische WurzelS
  • FAQ vom Würzelschn
  • 中国饮食文化法国饮食文化
  • 中国春节特色法国圣诞节
  • 英韩翻译案例
  • 中国自動車産業の現状と課題 -環境保
  • 战争的结构
  • 法语论文修改意见
  • reference 代写
  • A proposal submitt
  • Gründe der erfolge
  • 工业翻译中译英考试题目
  • Introduction to en
  • 从汉法主要颜色词汇的文化内涵看两国文
  • Un problème chez &
  • INTERNATIONAL AND
  • IHRM Individual re
  • НАЦИОНАЛЬНО-КУЛЬТУ
  • ТЕОРЕТИЧЕСКИЕ ОСНО
  • SPE会议论文翻译
  • Project Proposal 地
  • 中国意大利家用电器领域合作的可能性和
  • Career Goal与Career
  • Caractéristiques e
  • L'influence de l'S
  • 英语口语教学改革途径测试与分析
  • 语用学理论与高校英语阅读教学
  • 日本语研究计划书写作申请
  • To Whom it May Con
  • 译文中英对照葡萄酒产品介绍
  • 韩国传统用餐礼节
  • 日本語の暧昧語婉曲暧昧性省略表現以心
  • 研究计划书写作要求
  • Outline Impact of
  • 计算机工程与网络技术国际学术会议EI
  • 微软的人脸3D建模技术 Kinect
  • Qualitative resear
  • 新闻的感想
  • 与老师对话的测验
  • 韩语论文修改意见教授老师
  • 华南师范大学外国语言文化学院英语专业
  • APA论文写作格式
  • the surrounding en
  • Современное состоя
  • CHIN30005 Advanced
  • The APA Harvard Sy
  • Annotated Bibiolgr
  • Acker Merrall & Co
  • 资生堂进入中国市场的经营策略
  • Introduction to Pu
  • 软件测试Introduction t
  • Pro Ajax and java
  • 用户体验The user exper
  • AJAX Design Patter
  • The Rich Client Pl
  • Keyframer Chunks
  • 3D-Studio File For
  • Mathematics for Co
  • The Linux MTD, JFF
  • 中日体态语的表现形式及其差异
  • CB 202 System Anal
  • 论日本恐怖电影与好莱坞恐怖片的异同
  • 俄语论文修改
  • 古典诗歌翻译英语论文资料
  • <한중
  • 公司治理(Corporate Gov
  • 英语习语翻译中的移植与转换
  • 日语(上) 期末复习题
  • ACTIVIDAD CORRESPO
  • 리더&#
  • 购物小票翻译
  • 论文摘要翻译英文
  • Bedeutung der Prod
  • ELABORACIÓN
  • 英语考卷代写代做
  • 日本語の感情形容詞の使用特徴——ドラ
  • 未来創造学部卒業研究要領
  • 光之明(国际)低碳产品交易中心介绍
  • 中国の茶文化と日本茶道との比較—精神
  • 목차
  • Final Project Grad
  • 東京学芸大学>センターなど教員許 夏
  • 東京学芸大学 大学院教育学研究科(修
  • 白澤論
  • ポスト社会主義モンゴルにおけるカザフ
  • 言語と色彩現象—史的テクストをもとに
  • 渡来人伝説の研究
  • 中日企业文化差异的比较
  • Modellierung des B
  • 日本大学奖学金申请
  • 大学日语教师尉老师
  • 석사&#
  • Chemical Shift of
  • 中韩生日习俗文化比较
  • Measure of Attachm
  • 酒店韩国客人满意度影响因素研究
  • 要旨部分の訂正版をお送りします
  • Writing and textua
  • 日本企業文化が中国企業にもたらす啓示
  • 日本情报信息专业考试题
  • 雅丽姿毛绒时装有限公司网站文案(中文
  • 語用論の関連性理論「carston」
  • 組織行動と情報セキュリティ.レポート
  • Bedarf
  • 中日企业文化差异的比较
  • 从语形的角度对比中日“手”语义派生的
  • 中国明朝汉籍东传日本及其对日本文化的
  • 《中日茶道文化比较》
  • 从中日两国电视剧看中日文化之差异
  • FOM Hochschule für
  • Die Rolle der Bank
  • A Penny for Your T
  • 也谈ガ行鼻浊音的语音教学问题
  • On the Difference
  • 衣装は苗族の伝統文化の主な表現形式
  • 日语语言文学硕士论文:日本の义务教育
  • 日本的茶文化
  • Samsung Electronic
  • Synthesis and char
  • The traveling mark
  • The Japanese Democ
  • 四季の歌
  • CapitoloI La situa
  • The Effects of Aff
  • WEB服务安全保障分析
  • 音译汉语和英语的相互渗透引用
  • 中日两国服装贸易日语论文写作要求
  • 日语论文修改意见
  • 英语作文题目
  • 申请留学社会经验心得体会
  • BE951 Coursework O
  • Overview township
  • 日本の長寿社会考察
  • 日语老师教师电话联系方式
  • 「依頼」に対する中上級者の「断り」に
  • 日本語序論
  • component formatti
  • 日文文献资料的查阅方法
  • 日文文献资料的查阅方法
  • 日语文献检索日文文献搜索网站
  • 日本留学硕士及研究生的区别硕士申请条
  • Adult attachment s
  • レベルが向上する中国の日本学研究修士
  • 日本留学硕士(修士)与研究生的区别
  • Nontraditional Man
  • Engine Lathes
  • Automatic Screw M
  • Chain Drives
  • V-belt
  • Bestimmung der rut
  • 中山LED生产厂家企业黄页大全
  • 活用神话的文化背景来看韩国语教育方案
  • MLA論文格式
  • 旅游中介
  • MLA论文格式代写MLA论文
  • 小論文參考資料寫作格式範例(採APA
  • clothing model; fi
  • 共同利用者支援システムへのユーザー登
  • 太陽風を利用した次世代宇宙推進システ
  • RAO-SS:疎行列ソルバにおける実
  • 井伏鱒二の作品における小動物について
  • 從“老祖宗的典籍”到“現代科學的証
  • “A great Pecking D
  • 净月法师简历
  • 科技论文中日对照
  • 翻译的科技论文节选
  •  IPY-4へ向ける準備の進み具合
  • 論文誌のJ-STAGE投稿ʍ
  • Journal of Compute
  • 学会誌 (Journal of Co
  • 学会誌JCCJ特集号への投稿締切日の
  • 「化学レポート:現状と将来」
  • 韩语翻译个人简历
  • 九三会所
  • 事態情報附加連体節の中国語表現につい
  • International Bacc
  • HL introduction do
  • コーパスを利用した日本語の複合動詞の
  • 日语分词技术在日语教材开发中的应用构
  • 北極圏環境研究センター活動報告
  • 语用学在翻译中的运用
  • 日汉交替传译小议——从两篇口译试题谈
  • 総合科学専攻における卒業論文(ミニ卒
  • Heroes in August W
  • 玛雅文明-西班牙语论文
  • 西班牙语论文-西班牙旅游美食建筑
  • 八戸工業大学工学部環境建設工学科卒業
  • 親の連れ子として離島の旧家にやって来
  • 「米ソ協定」下の引揚げにおいて
  • タイトル:少子化対策の国際比較
  • メインタイトル:ここに入力。欧数字は
  • 東洋大学工学部環境建設学科卒業論文要
  • IPCar:自動車プローブ情報システ
  • Abrupt Climate Cha
  • Recognition of Eco
  • Complexities of Ch
  • Statistical Analys
  • Dangerous Level o
  • 中日对照新闻稿
  • 俄汉语外来词使用的主要领域对比分析
  • 两种形式的主谓一致
  • 韩语论文大纲修改
  • 중국&#
  • 俄语外来词的同化问题
  • 北海道方言中自发助动词らさる的用法与
  • 论高职英语教育基础性与实用性的有机结
  • 论高职幼师双语口语技能的培养
  • 论高职幼师英语口语技能的培养
  •     自分・この眼&
  • 成蹊大学大学院 経済経営研究科
  • アクア・マイクロ
  • 公共経営研究科修士論文(政策提言論文
  • 基于学习风格的英语学习多媒体课件包
  • 后殖民时期印度英语诗歌管窥
  • 汉语互动致使句的句法生成
  • 笔译价格
  • 携帯TV電話の活用
  • 英語学習におけるノートテイキング方略
  • 強化学習と決定木によるエージェント
  • エージェントの行動様式の学習法
  • 学習エージェントとは
  • 強化学習と決定木学習による汎用エージ
  • 講演概要の書き方
  • 对学生英语上下义语言知识与写作技能的
  • 英汉词汇文化内涵及其翻译
  • 论大学英语教学改革之建构主义理论指导
  • 国内影片片名翻译研究综观及现状
  • 平成13年度経済情報学科特殊研究
  • Comparison of curr
  • 英文论文任务书
  • This project is to
  • the comparison of
  • デジタルペンとRFIDタグを活用した
  • 無資格者無免許・対策関
  • 創刊の辞―医療社会学の通常科学化をめ
  • gastric cancer:ade
  • 揭示政治语篇蕴涵的意识形态
  • 试论专业英语课程项目化改革的可行性
  • 多媒体环境下的英语教学交际化
  • 翻译认知论
  • 读高桥多佳子的《相似形》
  • 以英若诚对“Death of A S
  • 论沈宝基的翻译理论与实践
  • 论语域与文学作品中人物会话的翻译
  • 浅析翻译活动中的文化失衡
  • 谈《傲慢与偏见》的语言艺术
  • 论语言结构差异对翻译实效性的影响
  • 英语传递小句的认知诠释
  • 英语阅读输入的四大误区
  • 在语言选择中构建社会身份
  • 私たちが見た、障害者雇用の今。
  • 震災復興の経済分析
  • 研究面からみた大学の生産性
  • 喫煙行動の経済分析
  • 起業の経済分析
  • 高圧力の科学と技術の最近の進歩
  • 「観光立国」の実現に向けて
  • 資源としてのマグロと日本の動向
  • 揚湯試験結果の概要温泉水の水質の概要
  • 計量史研究執筆要綱 
  • 日中友好中国大学生日本語科卒業論文
  • 제 7 장
  • 전자&
  • 現代國民論、現代皇室論
  • 記紀批判—官人述作論、天皇宗家論
  • 津田的中國觀與亞洲觀
  • 津田思想的形成
  • 反思台灣與中國的津田左右吉研究
  • 遠隔講義 e-learning
  • 和文タイトルは17ポイント,センタリ
  • Design And Impleme
  • Near-surface mount
  • 중국 &
  • 韩国泡菜文化和中国的咸菜文化
  • 무한&#
  • 수시 2
  • 韩流流向世界
  • 무설&#
  • 要想学好韩语首先得学好汉语
  • 사망&#
  • Expression and Bio
  • Increased Nuclear
  • 论女性主义翻译观
  • 健康食品の有効性
  • 日语的敬语表现与日本人的敬语意识
  • 日语拒否的特点及表达
  • Solve World’s Prob
  • 韩汉反身代词“??”和“自己”的对比
  • 韩汉量词句法语义功能对比
  • 浅析日语中的省略现象
  • 浅谈日语中片假名的应用
  • 土木学会論文集の完全版下印刷用和文原
  • 英语语调重音研究综述
  • 英汉语言结构的差异与翻译
  • 平等化政策の現状と課題
  • 日本陸軍航空史航空特攻
  • 商务日语专业毕业生毕业论文选题范围
  • 家庭内暴力の現象について
  • 敬语使用中的禁忌
  • Treatment of high
  • On product quality
  • Functional safety
  • TIDEBROOK MARITIME
  • 日文键盘的输入方法
  • 高职高专英语课堂中的提问策略
  • 对高校学生英语口语流利性和正确性的思
  • 二语习得中的文化错误分析及对策探讨
  • 高职英语专业阅读课堂教学氛围的优化对
  • 趣谈英语中的比喻
  • 浅析提高日语国际能力考试听力成绩的对
  • 外语语音偏误认知心理分析
  • 读格林童话《小精灵》有感
  • “新世纪”版高中英语新课教学导入方法
  • 初探大学英语口语测试模式与教学的实证
  • 中加大学生拒绝言语行为的实证研究
  • 目的论与翻译失误研究—珠海市旅游景点
  • 对学生英语上下义语言知识与写作技能的
  • 英语水平对非英语专业研究生语言学习策
  • 英语教学中的文化渗透
  • 中学教师自主学习角色的一项实证研究
  • 叶维廉后期比较文学思想和中诗英译的传
  • 钟玲中诗英译的传递研究和传递实践述评
  • 建构主义和高校德育
  • 论习语的词法地位
  • 广告英语中的修辞欣赏
  • 从奢侈品消费看王尔德及其唯美主义
  • 论隐喻的逆向性
  • 企盼和谐的两性关系——以劳伦斯小说《
  • 论高等教育大众化进程中的大学英语教学
  • 试论《三四郎》的三维世界
  • 李渔的小说批评与曲亭马琴的读本作品
  • 浅谈中国英语的表现特征及存在意义
  • 湖南常德农村中学英语教师师资发展状况
  • 海明威的《向瑞士致敬》和菲茨杰拉德
  • 围绕课文综合训练,培养学生的写作能力
  • 指称晦暗性现象透析
  • 西部地区中学生英语阅读习惯调查
  • 论隐喻的逆向性
  • 认知体验与翻译
  • 试析英诗汉译中的创造性
  • 言语交际中模糊语浅议
  • 认知体验与翻译
  • 关于翻译中的词汇空缺现象及翻译对策
  • 从互文性视角解读《红楼梦》两译本宗教
  • 从目的论看中英动物文化词喻体意象的翻
  • 高校英语语法教学的几点思考
  • 高校体艺类学生外语学习兴趣与动机的研
  • 大学英语自主学习存在的问题及“指导性
  • 从接受美学看文学翻译的纯语言观
  • 《红楼梦》两种英译本中服饰内容的翻译
  • 法语对英语的影响
  • 影响中美抱怨实施策略的情景因素分析
  • 代写需求表
  • 跨文化交际中称赞语的特点及语言表达模
  • 实现文化教育主导外语教育之研究
  • 试论读者变量对英语阅读的影响
  • 从文化的角度看英语词汇中的性别歧视现
  • 合作原则在外贸函电翻译中的运用
  • Default 词义探悉
  • 从图示理论看英汉翻译中的误译
  • 许国璋等外语界老前辈所接受的双语教学
  • “provide” 和 “suppl
  • 由英汉句法对比看长句翻译中的词序处理
  • 1000名富翁的13条致富秘诀中英对
  • 英语中18大激励人心的谚语中英对照
  • 反省女性自身 寻求两性和谐---评
  • 浅析翻译中的“信”
  • 集体迫害范式解读《阿里》
  • 横看成岭侧成峰-从美学批评角度解读《
  • 福柯的话语权及规范化理论解读《最蓝的
  • 播客技术在大学英语教学中的应用
  • 如何在山区中等专业学校英语课堂实施分
  • 奈达与格特翻译理论比较研究
  • 语篇内外的衔接与连贯
  • Economic globaliza
  • 用概念整合理论分析翻译中不同思维模式
  • 英语新闻语篇汉译过程中衔接手段的转换
  • 对易卜生戏剧创作转向的阐释
  • 动词GO语义延伸的认知研究
  • 反思型教师—我国外语教师发展的有效途
  • 输入与输出在词汇学习中的动态统一关系
  • 教育实践指导双方身份认同批判性分析
  • 中英商务文本翻译异化和归化的抉择理据
  • 从艺术结构看《呼啸山庄》
  • 从儒家术语“仁”的翻译论意义的播撒
  • 论隐喻与明喻的异同及其在教学中的启示
  • 话语标记语的语用信息在英汉学习型词典
  • 论森欧外的历史小说
  • 翻译认知论 ——翻译行为本质管窥
  • 中美语文教材设计思路的比较
  • 美国写作训练的特点及思考
  • UP语义伸延的认知视角
  • 成功的关键-The Key to S
  • 杨利伟-Yang Liwei
  • 武汉一个美丽的城市
  • 对儿童来说互联网是危险的?
  • 跨文化交际教学策略与法语教学
  • 试论专业英语课程项目化改革的可行性-
  • 论沈宝基的翻译理论与实践
  • 翻译认知论——翻译行为本质管窥
  • 母爱的虚像 ——读高桥多佳子的《相似
  • 浅析英语广告语言的特点
  • 中国の株価動向分析
  • 日语拒否的特点及表达
  • 日语的敬语表现与日本人的敬语意识
  • 浅析日语中的省略现象
  • 浅谈日语中片假名的应用
  • 浅谈日语敬语的运用法
  • 浅谈日语会话能力的提高
  • ^论日语中的年轻人用语
  • 敬语使用中的禁忌
  • 关于日语中的简略化表达
  • 关于日语的委婉表达
  • The Wonderful Stru
  • Of Love(论爱情)
  • SONY Computer/Notb
  • 从加拿大汉语教学现状看海外汉语教学
  • MLA格式简要规范
  • 浅析翻译类学生理解下的招聘广告
  • 日本大学排名
  • 虎头虎脑
  • 杰克逊涉嫌猥亵男童案首次庭审
  • Throughout his car
  • June 19,1997: Vict
  • 今天你睡了“美容觉”吗?
  • [双语]荷兰橙色统治看台 荷兰球员统
  • Father's Day(异趣父亲节
  • 百佳电影台词排行前25名
  • June 9,1983: Thatc
  • June 8, 1968: Robe
  • 60 players mark bi
  • June 6, 1984: Indi
  • 日本の専門家が漁業資源を警告するのは
  • オーストリア巴馬は模範的な公民に日本
  • 日本のメディアは朝鮮があるいは核実験
  • 世界のバレーボールの日本の32年の始
  • 日本の国債は滑り降りて、取引員と短い
  • 广州紧急“清剿”果子狸
  • 美国“勇气”号登陆火星
  • 第30届冰灯节哈尔滨开幕
  • 美国士兵成为时代周刊2003年度人物
  • BIRD flu fears hav
  • 中国チベット文化週間はマドリードで開
  • 中国チベット文化週間はマドリードで開
  • 中国の重陽の文化の発祥地──河南省西
  • シティバンク:日本の国債は中国の中央
  • イギリスは間もなく中国にブタ肉を輸出
  • 古いものと新しい中国センター姚明の失
  • 中国の陝西は旅行して推薦ӥ
  • 中国の電子は再度元手を割って中国の有